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HATIONAL ADVISORY COMMITTEE FOR AERONAUTICS

RESEARCH MEMORANDUM

A METHOD FOR THE DESIGN OF SWEPTBACK WINGS WARPED TO
PRODUCE SPECIFIED FLIGHT CHARACTERISTICS
AT SUPERSONIC SPEEDS

By Warren A. Tucker
SUMMARY

One of the problems connected with the sweptback wing is the 4iffi-
culty of controlling the location of the center of pressure and hence
the pitching moment. A method is presented for designing & wing to be
self-trimming at a given set of flight conditions. Concurrently, the
spenwise distribution of load on the wing is mede to be epproximetely
elliptical, in en effort to maintain low wing dreg.

These flight characteristice are achieved by warping the wing out
of & plene. The required warp is determined by the values of the coef-
ficients of a four-term series describing the pressure distribution;
these values in turn ere determined from four conditions on the 1lift,
pitching moment, and spenwise load distribution.

The method is directly appliceble to several wing plan forms,
including the triangle and the sweptback plan form with finite tips,
under the restriction that the leading edge must be subsonlic and the
trailing edge supersonic. The application to any specific problem 1s
simplified to a routine computetional procedure by the presentation of
certain basic data in tebuler form. A discussion is given of scme
points to be considered in the application of the method to a practical
case, and several representative exemples are worked out. The resulting
wings are shown to be ones which might practicably be built.

INTRODUCTION

The evolution of the sweptback wing for efficient flight at super-
sonic speeds has reached the point where the stabllity end control prob-
lems are being investigated. This situation implies that not only the
1ift and dreg of the wing but aleso the pltching moment must be considered
in relation to the ailrplene as & whole.
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In order to be truly effliclent at the design Mach number, the wing
should produce the design 1ift coefficient without creating ebout the
eirplane center of gravity a pitching moment thet would require a large
deflection of the trimming device (with & correspondingly large drag).
In addition, it is generally desirable that the spanwise distribution of
1lift be as nearly elliptical as possible and that any adverse pressure.
gradients on.the wing be small so as ‘to retard separation of the flow.
These two conditions are not sufficlent to guarantee that the wing dreg
will be & minimm because at supersonic speeds the dreg due to 1lift is
also dependent on the chordwise loading; they are, however, conducive
to low wing drag.

The use of wings warped to produce a constant pressure over the
surface has been proposed to eliminete the large adverse pressure gradi-
ents encountered with the flat wing. For a glven plan form, however, &

uniform pressure distribution allows no control over the pltching moment.

The wing wexrp necessary to produce certain other pressure distributions

has been derived (reference 1), but these distributions do not lend them-

selves reedlly to the control of plitching moment; in fact, the conical
nature of the pressure distributions fixes the center of pressure at the
center of area for triangular wings.

In the present peper, data are presen'bed. from which the wing warp
necessary to produce a certain type of pressure distribution mey be
determined. A development is then given in which certain constents
appearing in the expression for the pressure distribution are determined
by conditions on the 1ift, pitching moment, and spenwise load distri-

bution. In this manner & method is derived for designing a wing of given

plan form, operating st a gliven supersonic Mach number, to have a speci-
fled 1ift coefficient, & specified center of pressure, and a nearly
elliptical spanwise load digtribution. Although the pressure gradients
ere not controlled directly in the method, the type of pressure distri-
bution used ensures thet for most ressoneble design conditions the
gradients will not be excessive. There is no reason toc believe that a
configuration using a self-trimming device @eésigned by this method will
necesgsarily have a. lower drag than will a similar configuration using e
flat wing and a deflected trimming device. The possibility doesg exist,
however, and should probebly be investigated. : ’

The method is appliceble to a wide class of wing plan forms shown
in figure 1; the principel requirement is that the leading edge must be
subsonic and the trailing edge supersonic. The presentation 1s made in
e form suiteble for englneering use, and a table and computational form
are provided so that the eppliceation of 'bhe method is reduced to routine
computation. =
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SYMBOLS

ol - 2) -

Ap =
(1-x)[1- o1 -2)]

B =

my

M

2 _ 1

local chord

root chord

2 - Y 2(1+x+x2)
chord 5 = cp
mean eserodynamic cho ( /'Bcdy : ) )

dreg coefficient (%)

local 1ift coefficient (L:Lft on chordwise strip dy in wid%\
qc

11Pt coefficient (%fﬁ)

pitching-moment coefficient, positive when pitching moment

itching moment
qSc

tends to move wing apex up (P

taper ratio Tip chord )
Root chord

cotangent of sweepback engle of leading edge (see fig. 2)
cotengent of sweepback angle of treiling edge (see fig. 2)

free-gtream Mach number

n=pn (see fig. 3)

7L
Py

static pressure on lower surface of wing

static pressure on upper surface of wlng

R
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P lifting-pressure coefficient (P—I'—q—PU-) .
q free-gtream dynamic pressure - - - ; :_

r= g (see fig. 3) ol [

8 ' semispan (see fig. 2) . -
(o g m‘ = - —
) }
8 wing ares _ - ) - . o
X,y rectanguler coordinates parallel é@nd normal, respectively, to
free streem, with origin at w:l.ng' apex (see fig. 2) i -
x! distence behind leading edge; measured in free-stream ) ~ .
direction : : _ S =
Xgo distance of moment axis behind. win'g apex (see fig. 5) B *
xt distence of moment axis behind 1eading edge of mean aexro- Lo
dynemic chord (see fig. 5) : . . LT Tl
z distance perpendicular to xy-plane, positive up )
- : ANATLYSIS
General

A convenlent method is derived in reference 2 for finding the wing
shepe corresponding to a given pressure distribution. In the pregsent @ . - ~-=
paper, the lifting—pressure distribution over the wing 15 taken to be
of the form i ; Lo s

= Cy' + Co'x + C3'|y| + 'y : (1)

vhere the exis system is that shown in figure 2, end C,%, Cp', c3','

and Ch' . are as yet arbitrary constents. Other terms could have been P
included in the series but the terms shown gave acceptable results with-

out requiring undue labor. For convenience, the coefficlents of the V.
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serles mey be replaced by others similer in nature such that the lifting-
pressure dlstribution can be expressed by the following equation:

P_C%,1-xCx 03 _C

L~ C 1-aCpor Cp° °L°2 : (=)

For purposes of calculation, the wing is assumed to have no thick-

ness so thet the shape derived is actually the mean surface of the wing.

Within the assumptions of the linearized theory, an arbitrary thickness

distrivution, symmetrical ebove and below the meen surface, can then be
added with no effect on the 1lift and pitching moment.

Bulteble integrations of the pressure distribution over the plan
form may be performed to obtain equations for the 1ift coefficient, the
pitching-moment coefficient, and the spanwise load distribution. One
condition may then be imposed on the 1lift, one on the pitching moment,
and two on the spanwise load distribution. This procedure results in
four linear equations in the four unkmowns Cy/Cy, Cp/Cr, C3/Cr,

end C . The values for these constants may then be substituted into
L,

equation (2), and the shape of the wing (that 1s, the warp) necessary to
produce this pressure dlstribution can be found by the method of
reference 2. :

The foregoing material has described the method in general terms.
In the following sections more detalled descriptions are given: First,
of the procedure used to find the werp corresponding to each component
of the pressure distribution; second, of the method used to determine
the constants for the case of plan forms having pointed tips; and last,
of the corresponding procedure for plan forms having finite tip chords.
Although the determination of the constants is in principle the same for
both types of plen forms, certein simplifications occurring for the
pointed-tip case make not only the actual numerical work of determining
the constants but also the exposition of the procedure simpler for this
case.

Warp

The werps or wing shepes necessary to produce the several components
of the pressure dlstribution given in equation (2) are first found sepa~-
retely es functlions of the four constemts Cy/Cr, Cp/Cr, C3/Cy,

and CII-/CL' Later, after numerical values of the constants have been

determined by the condltions imposed on the 1ift, pitching moment, and
spanwlise load distribution, the separate shapes are superimposed to form
the finel warped wing.



RACA RM I51F08

The general 1dea in finding each wing shepe 1s first to determine
the slope of the wing surface (g—:-)z:o asaociated w:l.th the pressure
distribution under .consideration and then to 1n'begra.te this slope in
the x-direction to get the z-ordinate at any point (the direction of =z
is taken mutually perpendiculer to x and 7y, positive upwards). Of
the availeble methods for finding the wing slope corresponding to &
given pressure distribution, that presented in reference 2 was choeen
for the particular problem. The principasl advantage of this method is
that it eliminetes the need for considering .z in the integre.tions
involved and so simplifies the integrations. :

The slope of the wing surface corresponding to ea.ch term of equa-
tion (2) is found by epplication of equations (8) and (17) of refer-
ence 2. The wing shape as & displacement fram the £ =_0 plane is then
found by integreting the slope in the x-direqtlon; thus,

z = (%;*) dx (3)
By z=0

The following equations result for the wing ahapes corresponding to 'bhe
four components of the pressure: :

C ¢ } .
Cr. [ )
Zy = L le E—-—-I-'- x 1—3;- 2£ - _n2r2 -2 cosh‘ll-ﬁ]-';l +

- -

. V1 - n2(2 + -r)cosh-:':l %&—:—25- +
V1 - 22(1 - r)cosh1 5(1—3-7 (4a)
zp =l PR, = - L2 A SR - erfeomt L]
et IJ oz
| R SR J comel (L 2y

(kv)

)
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i) '
x2R £ - L x2 1|:5 1-n2r2- (1+3r2-—n2r2)cosh ’ I

(1+r)2+2( )(r+r2) .]__+_n2_r_ .

oVl - o2 n(l+r)

(1-r)2- 2@- @ (1‘- 1'2) cosh~t|L1= nr } (ke)

2\1- n? n(l-r)

Cu) ("u) |
mCL('c— 201\ Gy, (1- n2r2)3/ 2 2

L - L/ 43 1 2-10m 2 2F _ ner2 -
2 =g x3R) = el 362 +3n2(1_n2) oIVl - n2r2

6r2cosh'llzlr-l + ( 3/2[ 9n +2n1" (1'2"'1'3)

l~n

111+ n2r

n(l+r)

2- 23n (r-23)- 563(1+r3):} cosh™

1 [6- on24 onk 2. 302
(1-n2)3/2L 2 (- r3)'—5—(r'r3)‘

2, 2
25( . 3 =1{1 - ner
3 (l r ﬂ cosh —_n(l- ) (4a)

The significance of the quantities r end n 1s most clearly
seen by reference to figure 3. Calculations have been mede of the
quantities Ry, Rz, 3, and Rl].-’ which are in a certaln sense the

conical partes of the wing shapes, and the results are presented in fig-
ure 4 and teble I. The figure is intended to be merely I1lustraetive;
the results In the teble should be used for actual calculations. A

e
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study of the figure provides a qualitative idea of the ‘verious wing shapes
One interesting fact to notice 1s that no infinities occur &t the center
line (r = O0) for the cases in which the pressure is proportional to x
end to |y} (compare with the shapes derived in reference 1).

Evaluation of Constents for Pointed-Tip Wings (A = 0)

The pressure distribution given by equa.tion (2) ia integrated over
the plan form to obtaln.an expression for the 1ift of the wing. If the.
limits shown in figure 5 are used, the following equa.tion expresses the
value of the 11ft: .

Lift e cr-l% P
LT | oc ay L ax ' (5)
b L«£ S Jym CL L

If the ‘Iindlcated operstions are carried out and thé 1lift coef-
ficient is formed, the follawing equatlion results:

c c c3" , ¢C
e l,2-k>2 173 174 :
1 cL+ 3 CL+3CL+%C (6)

The pitching moment sbout an axis a distance Xo behind the wing
apex may also be found by the following equation:

H:iac fsdy cr%(x-i:)_?.ax (7)
q L Jo 1970y,

After the pliching-moment coefficient is formed, the following equation
i1s obtalned: '

aw_[3% 2-k:| l:-kfg_3-3k+k2 Cp |
B E 3-3k+k°Cp

T Ecr 2(1 - k) S 4(1-x) |CL

11X 3-k ok -k 9& (8)
2Cr  8(1 - k) ‘+cr 20(1-1:) CL, _ _

I

'
o,
L

=}
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The spanwlse loed distribution 1s found from the followlng integration:

it B N cr-'%ldx
cI‘CL. Cr y/m CrL

where c¢ 18 the local chord and cy is the local 1lift coefficlent.

The integration has already been made in flnding the 1ift. The
following equation results:

. -l l-k_g_ k—a-——c.-'
CrCL Cy, 2 ¢ CL C;, Cg

T“kgi 3-%9‘,2-%03 9)

For purposes of reference, the spenwise load distribution if elliptical
would be given by the following equation:

CCI 2(ln+ X) -‘,1 - 02 ' (lo)

chL

where A = 0 for the pointed-tip case. Equations (6), (8), and (9)are
now used to f£ind velues for Cp[Cr, Cp[Cr, C3[Cp, end Cy[Cp. The
following conditions are first applied to equation (9):

~
c
< > 2(1;' A) (value for ellipse)

°L /oo :

1 (11)

d(CCI )
exCr/ =0 (velue for ellipse)

do o=0 . </

where again A = 0 <for the pointed-tip case. These conditions are not
quite arbitrary but were chosen after trial of a number of possibilities.
The selection of these particuler conditions not only mede possible a
solutlion for the four unknowns but elso resulted in & single equation
for the spenwise load distribution which was a falir approximation to an
ellipse. (The degree of the approximation is shown subsequently. )
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The solution for the congtents msy now be made. Substitution of
equations (11) into equation (9) gives the following values for Cl/CL

and Cp[Cr: | o e

o, - .2 C3
c;; (L+Xx)x 1+ kCp

Thege values are substituted into equation (6) and the following solu~
tion for..Cyfcy, 1is got:

ﬁ.:s-.é
Cr, n

The values of - cl/cL, '02/01. , and cu/c ave substituted into equa~

_tion (8) and the left-hand side is set equal : to zero to arrive at the
golution for C3/CL . The solutions are collected in the following

equations: i . : .- )
Ch Y S )

h_g. 16 . .
Cr, 6-% -

C3 _8(1 + k) 34 - k) -_-1+;{:1,=;+k2.___'§59
Cr. 1-Xk |10(1-k) 5“(1_:]:2) 2¢r

or . -
©3_8(1+X)| 7-36 _1+Tes+¥® X > (12)
G 1k |DT-E sa-x?) €
92.=——,t-—— —2—-03 — B
CL (Q+X)x 1+KkC

1w ,1-%03
"(L+Xk)x 1+ kECr,

J

The two forms for C3ICL are given because 1n some cases the center of

pressure 1s loceted more conveniently with respect to the meen aerodyneml ;

IR
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chord T. The geometricel relation between x, and X' is indiceted
in figure 5; the analytical relstion is :

Xo_2x', 1 .
e 3T 3@ oD (13)

For k = O (triangular wing), equations (12) simplify to the
following equetlons:

-

Sh'_g_ 16
CL T
3_4g6_1_3%
Cr, 8<5 S0 2 ¢p

or

—r> > (1)

¢ ©Cp ' |
~d

Equetions (12) when substituted into equation (9) result in the
following equation for the spanwise load distribution:

%=§+<6-1;§>02-(6-J;§>o3 : (15)

This equation is uniformly valid for all poimted-tip wings, independent
of the 1ift, center of pressure, Mach number, and relative sweeps of the
leading and trailing edges. The load distribution given by equation (15)
is compared with the elliptical distribution of eguation (10) in fig-
ure 6. As a matter of incidental interest, the spanwise center of load
on one wing penel is located 0.409 semispan outboard of the wing center
line for the load represented by equation (15), compared with a corre-
sponding value of 0.424 for the elliptical load.

Evalustion of Constants for Wings with Finite Taper

. The problem of wings with finite taper can be approached in two
ways. The more obvious method is to assume that the pressure distribution

QEEITERTTAL
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defined by equation (2) epplies over the entire wing surface and to

calculate the required warp. (A separate calculation for the warp in the .

tip region, which 1s shown shaded in fig. 2, ‘is required, but this cal-.
culation is not impossible to make.) The disadvantage of this procedure
is that at the tip the required wing slope takes on very large values
(theoretically infinite). A more practical approach, and the one
adopted in ‘this paper, is to relax the condition on the pressure in the
tip region. For e flat 1lifting wing with subsonic lesding edges, the
average pressure in the tip region is known to be close to zero (ref-
erences 3 and 4). It is not entirely i1llogical to suppose that for a
slightly warped wing the pressure in the tip will also be very small.

If for the warped wing the pressure in the tip were taken to be exactly
zero, the equations for the 1ift, pitching moment, and so forth would
be derived by first integrating the pressure_distrlibution defined by
equation (2) over the entire wing, including the tip region, after which
the integral of the same pressure over the tip region would be sub-
tracted, In order to keep the equations within reasonable limits, a
constant pressure was lnstead subtracted from the tip region. The value

of this pressure wes taken to be the value g:!.ven by equation (2) at the -

middle of the tip chord; namely, . -

AR 1;] et a9

After the foregoing assumption has been ma.de , the determination of
the four constants proceeds very similarly to that for the pointed-tip
wing: The pressure distribution is integrated to obtain equations for
the 1ift, pitching moment, and spanwise load distribution; two conditlions
are set on the spanwlse loe.d distribution, and the resulting two egua-
tions ere solved together with the equations for the 1ift and the
pitching moment to give values for the constents Cp[Cr, CofCr, c3/cL,

and C)_l_/CL. The work Jjust outlined is now given.

The 1ift equation, corresponding 'bo equa.'bion (6) for the pointed-
tip wing, is _ - =

2 -k 2@L+k) 2-MlL+k -
1"(1'“ E}(l-x) (;LL__+;'2;'__2(1(-;.))£,CL

1+ 2\ c 143 . |Ch - ' o
ST ‘]Ef[ﬁ:‘l@ an’_
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vhere

A= o - D) (18)

In this equation, all the terms containing A arise from integration
of the pressure over the %ip region, whereas the remeinder of the terms
represent the integration of equation (2) over the whole wing area. If
A is(g?'t equal to zero, the equation reduces to the form given in equa-
tion .

The pitching-moment equation, corresponding to equetion (8) for
the pointed-tip wing, is

Cn 142 Xo 1 -1 1+ k)(1 = 2)2 Cy
(1+x+l2)q=l}§‘%‘l'36‘;‘lzg{mf)"( ;(1)-1:) ']Fﬂ*

1-,)  (1+k)(E -2
’ﬂ'(—al-'xg 2

Eil-k)+2(l-ﬁ:|]3 i°._1‘k+i15+
Cr

2(1 - ) I-A ©

E2(1 - A 1+ k+ k)1 -2a)2
41-1:)'( . I(lz(kr) -

N - C 14+ 2\ Xo
R )00 SRS
EMW] c3 ,
R 1-5 )

%o - A
<1T+'2‘95'[%+8E1_1.k5 -

1+ -2 % (19)
(1 - & oL '

it
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| N . .
p= (L -X)
2(k + n)(1 - &)
B (20)
c=_ 22 __ A(en+0)(1-k)
2(k + 1) " 2(k + 2)2(1 - )
/

The remarks following equation (17), with A replaced by B and
C, and equation (6) replaced by equation .(8), also apply to equation (19).

Because of the existence of a tip region for the Wing of finite ~ = = 7
taper, the spanwise load distribution must be described by two equations, T
one applicable from the center line out to the beginning of the tip N
region and the other applicable over the remsinder of +he span:

< - M1 - k) T - : - -
For 0 Sog 51 TR

. . - c ’. : | .
[g_ + k)él H%_,_, (1 -2) g%_a, E‘qa? - (1 -1) % 03 (21:_11__ e

Cr

X



NACA RM I51F08 T 15

- A1 - k)
For 1 (k+n)(1-7~.)scsl’

ccy ={(1 +n)(x -2) C1

. e

(1-1x2-f2 - a2+ )11 +n) - (x+n]] G2
2(1 - x)(1 - &) Cr

E.(l+n)-(k+g€|9_§+%}_{(l+n)(l-x)_c_l_
T - k CL T -k Cy,

(L -2)[p(1 - x) - 2(k +n) + A1+ K)(k+2n)] C2 _
(T - K)(T - \) o

(L-% -(1-2)(k+n)C3 (1-M)(k+n)CR _ ‘
I-xk Cr, I-k  Cp

c C; C C
II:CL+k)él - 2) c_i__'_ (1 - 2) é'ﬁ'ﬂaa - (1 -2) 6%03 (21b)

The conditions given in equation (11} are now applied to equa-
tion (21s) to obtain the following relations: :

C1  Lk(I + A 1-%k c

ol F R P +(1-x)(1+k)§ (22)
Coa 41 -2% _ _2 C3
GO+ Ex TI+ED (23)

These values of C]_/CL and 02/CL are substituted into equa-
tion (17) end equation (19). The center of pressure is fixed at x,
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by putting C, equal to zero in equation (19) and the following
equations for C3fC;, end Cy[C; are obtained:

h_ 6(1 + 2 B(L +2) - M2 , (b -
c_-(1+3x§ -+6_(]).+_X)AE' (+3,): :+L _ 2x)(1+x1 ](21;)

1 k)L + A+ A2 +3
L 8(3).(-;:)(1++1:I+ )_3 (i—frﬂ-)%

[+3k(1->.) 3(1+kl(1-).)2 él Cy

(T - x) 10(1 - k) Cp -

e - om0 e

I:(3+k k2)(1 + A) -(3+5k+1):2)7‘.2+il+k+k2)7«.3
(1 - k

(2 - x)(l + k)c:,} : : (25)

wvhere A, B, and C are defined in equations (18) and (20).

Equetions (2%) end (25) can be solved for Cy,[C;, and C3/Cy, efter
which Cllc and C ICL can be found from equations (22) and (23).

This work is best done with the mumericel values for A, k, n, and
Icr for the particular wing under consideration. The procedure is

illustrated by an example in a subsequent section. The reletion
between x,fc, and X'C corresponding to equation (13) for the

pointed-tip wing 1s i .

2 1 . o2
2(1+)«.+)\.)x L4+ A ~-2M (26)

E;= (L +r) T T3+ ML -K)

The spanwise load distribution corresponding to equation (15) for
the pointed-tip wing can be obtained by substituting equations (22)
and (23) into equations (2la) and (21b). The substitution into equa-
tion (21b) produces only added complexity, and the result is not given

eI
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here. The substitution into equation (2la), however, gives the fol-

Ml - k) .,

lowling simplified equation for. 00 S1 - (& + o)(T - %)

o p(1en) a<1-x)(1-x2)_°_h] 2 _ (1.0t o3
o : = o or. (1 M_CL_U (27)

Unlike the spanwlise loed distribution for the pointed-tip wing,
the load distribution for the finite-taper wing cannot be compared.with
an elliptical distribution for all wings but must be compared separately
for each exemple investigated because of the form of equations (27)
and (21b). The ellipticel distribution is still given by equation (10).

- NUMERICAL: COMPUTATIONS

Development of Form for Computation

After numericel values have been found for the constants Cl/CL )
CE/CL’ 03/01." and Cll_/CL, these velues are used with equations (L),

or rather with the mmmbers in table I computed from these equations,

to £ind the z-displecement corresponding to each component of the pres-
sure distribution. The four displacements are then added to produce
the final shape of the warped wing. In principle this process is
straightforwerd so that in practice 1t may be reduced to routine compu-
tation. A form sulteble for such computation is now developed. The
particular form presented 1s one such that, at a& given spanwise

station o, the z-ordinate as e fraction of the local chord c 1s given
as a function of x'/c, the fractional distance behind the leading

edge of the local chord. As e typicel example, the z-ordinate corres-
ponding to the second term of equation (2) is considered. From equa-
tion (46) the following relation is written:

m %2 _p C2mer rx\er\® o
CLc 2CL,3 Cp c Cp
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The following geometricel relations are easily verified:

E_ -a(l-l.)]'— g!.l_"kll B
Cp - .

c
E;=1-a(l-k)

mCyp 3 . k

8. 1=\ )
go that -
_m_z_agRacz(l-k)Ll-c(l-x)l x' o(l - ) }2
C. © CL. I TR - o - A
Fow if A, 18 defined as )
1-2) -
%E(l-x)%-o(%-x)]
then : _
o (-1 -oa-]
A, 1 - _
and it can be shown that
Ao _x! 1-2 '
F ey (1-1:)?_{-0(]).-).1! Tt (28)
s0 that
m 22 C2 ¢ (Ao)a |
e TR \T (29)

Thus, at a particular spanwise station ¢ on a given wing, zQ/c is

& function only of r (since R es a function of r is known from
table I). From equation (28), x'/c 1s also a function of =r; thus,

?=—- _ _ (30)
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so that zn/c can be calculated for various values of x' Jec. By

experience, it has been found that the most satlsfactory way of choosing
values of r +to use in the computetions is to plot, for the particuler
wing under consideration, x' /c against r (for the various values

of o) from equaetion (30). Only values of x'/c between O &nd 1
are of interest. This fact determines, for each o, the range of r

to be used, and from the values of r used as arguments in table I
those which glve a satisfactory distributlon of points aslong the chord
are chosen. Relations similar to equation (29) for the other
z-components can be derived; these relatlons are

E.z_l-R i':Ao

¢ "C T
z c A°2

%ELRs'cff;(?) > (31)
2, Oy /g\2(A)\3

$2-n2@® 6

-

The emount of werp is seen to be directly proportional to Gy end’
inversely proportional to m (for a given n).

For some purposes, the wing shape can be more conveniently
expressed In terms of z/cr and x/cr rather then In terms of z/c
and x° /c. This conversion is easily made by use of the following
equations:

-

c—i‘-=[}l.-cr(l-x)—§
) ’ (32)
c"—r=[1-a(1-x_)J ’f:—'+-"—J(}_—'k—"”'l

The foregolng equetions are embodied in table IT, which 1s self-
explanatory. Thls form has been used to compute several examples,
some of which are discussed In the next section.
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Numerical Exeamples

Example I.- The first example chosen ligs the following character-
lstics:

n= 0.6
k = 0.6 :

A =0 ‘
Cp =0 at "E_'no.é5

This set of characteristics represents a sweptback wing, tapered to a
point at the tips, with the center of pressure & little more than

50 percent of’ the mean serodynamic chord aheed of the location for the.

corresponding flat wing. The 1lift coefficlent, sweepback angle of the
leading edge, and Mach number are not specified; the finel amount of
warp 1is directly proportional to the 1ift coefficient, and any combi-
nation of sweepback angle end Mach number that gives n = 0.6 may be

chosen. - —_ : - -

The four constants are found from eqpations (12) to have the
following velues: A . =

T [ - - =

_c. .- - .
Lapaso T L
GL . . .. . - -

Cg.
Cr,

C3
cL

C :
l’ = 0,9071 : -
Several velues 0f o. are selected and, for these values, plots of
x*/c against r are made from equation (30). Slide-rule accuracy
1s sufficlent for these celculations, and only a few points need be
teken to define the curves. The resulting curves for example I are
shown in figuie 7. These curves are used to pick values of r from
table I. The corresponding values of R;, Rp, R3, and R) from

table I are entered in table II, together with the other necessary
deta, and the indicated computations are carried out. .

NACA RM L51F08

22 & _19.0819 ! -

o =15.9021 . ' T

W
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The results of the computetions are shown in figure 8, in which
the ordinates are given as fractions of the local chord and the origin
of the axes is at the leading edge of the local chord for each value
of o. BSeveral features of the wing ere evident from this form of
presentation: namely, the reflex curvature of the alrfoll sections
near the center of the wing (the angle of attack is infinite at the
center line), the disappearance of this reflex curvature at outboard
sections, the relative twist between inboard and outboard sections,
and the (variable) dihedral. A better picture of the actual wing is
obtained by plotting the resulis as in figure 9. In order to give more
physical meaning to' the picture, the results have been plotted for a
1ift coefficlent of 0.2 end a leading-edge sweep of 60° (m = 0.5TT).
This last value thus corresponds to e Mach number of 1.44 since n 1is
equal to 0.6. ‘There ‘are two points worth mentioning with regard to
figure 9. The first is that, within the accuracy of the linearized
theory used in this paper, an erbitrary z(o) may be added to the
verticel ordinates without changing the serodynamic characteristics of
the wing. As pointed out in reference 1, this procedure is permissible
so long as the resulting wing does not lie far from the z = O plane
(that is, modification of the wing shape by addition of a set of ordi-
nates which depends only on ¢ (not on x) mey be practiced in moder-
ation). The practical significance of this point is that the wing
shape mey be modified by this procedure to simplify the problem of
loceting spars. The other point is that for most configurations the
inboard stetions of the wing, which are those having the lergest warp,
are buried within a fuselage and, therefore, present no structural
problems. (The effect of the fuselage on the aerodynsmic character-
istics is discussed subsequently.) This perticuler exesmple and pre-
sumably others not too extreme should therefore be quite practical to
build. :

The pressure distribution for this exsmple is shown in figure 10.
Because of the far-forward specified locatlon of the center of pressure,
part of the wing cerries negative 1ift. The spanwise distribution of
load is that shown already in figure 6.

le II.- The second illustrative example has the following
charecteristics:

n = 0.8
k=0
A=0

Cp=0 at £ =0.50
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The velues k =0 and A = O characterize a triangular wing. The
center of pressure is at the same point as the center of pressure of

the correspcnding flat wing. The purpose of the present design is to
show the kind of warp that might produce a wing with essentially the

same center of pressure and spanwise load distribution gs the flat
triangle but without the steep pressure gredients that are known to
promote lea.ding-edge separation on the flat triangle, at least at low _
Reynolds numbers. A constant-pressure triangular wing, of course, has
the same center-of-pressure location as a flet triangle end has no
adverse pressure gradlents, but the spenwlse loa,d distrjbution of such _
a wing is triangular rather than elliptical.

. The method of computation 1s much the ssme as that used in the
previous example., The principal difference is that equations (1),
rather than equations (12), may be used to f£ind the following values
for the four constants: B

Q
-

& = 1.0907

(@]
=

= -_0.'9082

b3

= 1.090T _

= 0.90TL

é’li—’ kS

The results of computations made with tables I and II a.re presented in
figure 11. These plots clearly depict a wing the main part of which

is almost flat and which has a turned-down leading edge, a small twist
from root to tip, and almost constant dihedral angle alopg the span.

For eese of manufacture, this dihedral can be removed without affecting
the serodynamic characteristics very much. (See the discussion of this
point under exsmple I.) The pressure distribution is shown in figure 12;
the chordwlise gradients of pressure are not lerge. The spanwise load
distribution is again given by figure 6.
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Exemple III.- The third example chosen is a wing with finite taper,
characterized by the following conditlons:

n=0,7
k = 0.6
A =04

=O t£=0.2
Cp =0 &t & =0.25

These values aere substituted into equations (18), (20}, and (26) to
obtain the followling values:

EE = 0.82857

r

A = 0.05861

B = 0.12308

C = 0.20986
Substitution of these values into equation (24) gives

C
EE = -0 . lal]'l'
T, .

Substitution of this value into equation (25) gives

' 3 . u.Th38
o Th3

The remaining constants are obtained by substitution of this velue of
-c3/cL into equations (22) and (23); thus,

%2 . _5.0614
Cr,

C1

—— = 2,6451
o 5

r

From this point the method of calculation 1s the seme as that used in
the two previous examples: sulteble values of r are chosen, and the
form of tsble II is followed to arrive at values for the wing ordinates.

N
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The resulting wing shape 1s shown in figure 13 togéther with the pres- -
sure distribution; the results have been plotted for a 1lift coefficient—
of 0.4 and a leading-edge sweep of about 59° (m = 0.6), corresponding
to & Mach number of 1.54. The center-of-pressure location shown in

the figure for the flat wing wes found from Treference 5. The wing

shape 1s not extreme, and the previous remerks concerning the removal
of the dihedral angle apply equally well to this case so that the wing
can be bullt feasibly. The pressure plot shows the result of the
essumption regarding the pressure in the tip region.

The follow:lng spanwise load distrihutions are found from equa-
tions (27) and (21b): . . _. .

For 0= d& 0.795, - : -

CCZ - .

o ~ 0.891 - 0.50202 + 0.10903

For 0.T95 &£ o0 £1,

o = 2.82 - 2.44g ou902:-|-0'11a3
crcL— . .- . - . ) .

These equations are plotted in figure 14, which also shows an ellipti-

cal load distribution for comperison. - The load distribution for the -

example being discussed is a fair approximation to the ellipse so that = =~

no large drag increase relative to the flat wing is to be expected as
a result of the specified forward location of the center of pressure.
As a matter of fact, the spanwise load distribution of the flat wing
is itself not ellipticel, so that the drag of the warped wing might
well be less then that of the flat wing

NOTES ON PRACTICAL APPLICATION

Range ‘of applicabllity.- The method described in the preceding
sections 1s directly applicable to wing pla.n ;E'orms of the types shown
in figure 1. The locations of the various Mach lines shown in the fig-
ure relative to the leading and trailing edges and relative to the

center line are significant. The leading edge must-be subsonic and the :

trailing edge supersonic; these conditions are expressed by the
following irequality:

12n2|k| (33)

Y



NACA RM I51F08 SEEIIRETIT™ 5

For the case of plan forms with finite tips (A # 0), the Mach line from
the leading edge of one tip must not cross over to the opposite wing
panel. This condition is expressed by the following inequalilty:

>A =k
n 2 (34)

In addition, because of the approximete nature of the assumption
regarding the pressure in the tlp reglon, cases in which the tip region
covers & large pert of the wing should be viewed wlth caution.

ting time.- The exact time required to compute a given example
depends on such factors as whether A or k or both are equal to zero
and the mumber of points tsken to define the wing surfece. The fol-
lowing time estimates are glven as representative of those required by
using a mesnually operated calculating mechine. To calculate the con-
stents, 1/2 to 1 hour is required, and to calculate eight spanwise
stations, with 1l points along the chord at each station, 8 to 12 hours.

effect.- In the derivatlion of the present method, the wing
hes been considered as 1solated; whereas 1ln practice it 1s usually
mounted on a body, on which mesy elso be mounted a tail. The avallable
informetion, both theoreticel and experimental, is not yet sufficlent
to allow an ‘accurate quantitative prediction of the effect of the body
for the general case. (See references 6 and 7 for a discussion of the
problem.) Some quelitative estimates can be made, and by reference to
whatever experlimentel data may be avalleble for configurations resembling
the particuler example under consideretion, rough quentitative correc-~
tions can be applied for the effect of the body. If the wing is mounted
on the body so that the chord line st the Juncture is parallel to the
body center line, then the 1lift of the combination when the wing is at
its design position with respect to the free stream will probably be
close to the sum of the 1lifts of the isolated wing and the lsolated
body. If, however, the two are comnected so that when the wing is at
* 1ts deslign positlon with respect to the free stream the body is at
zero angle of attack, then the 11ft of the combinstion will probebly
be somewhaet less then the design 1ift of the wing. In all cases, the
center of pressure will probebly be somewhat more rearward than that
calculated when only the isoleted components are considered. If these
Poregolng statements, which are obvliously conjJecturel in nature, are
accepted, then some allowance can be made for the effect of the body
by edJusting the design condltions of the wing. The body-interference
problem is nelther different nor more serious for the warped wings
consldered in this paper then for conventlonsl flat wings, and all the
preceding remarks apply equally well (or poorly, as the reader may
Judge for himself) to both types of wings.

o v g
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Off-design operation.- In the course of a flight, the wing may be
required to fly at the design Mach number at-attitudes other than that
for which it was designed. Within the l:l.mits of the linearized theory
used in the anslysis, the principle of superposition applies. The lift
(and pitching moments of the warped wing at en attitude different from
the design condition is therefore simply the design 1ift and pitching
moment plus (or minms) the 1ift and pitching moment of a flat wing of
the same plan form at an angle of attack equa.l to the angular deviation
of the warped wing from its design attitude. When the wing is required
to operate at Mach numbers other than the design value, however, no
simple method is availsble for estimating the change in aerodynamic
characteristics, and even to calculete the properties by the use of the
linearized theory 1s a practicably :meossible Job. An experimentel test
1s the only way to find the answer. ’

Applicability to other problems.- Although the derivation of the
complete method has been limited to wings of the types shown in fig-
ure 1, wilth approximte elliptical span loads, the basic results
presented in equation (4) and table I are applicable to other wings as
well, For example, a derivation similar to thaet presented in this
paper could be made for sweptback wings with cross-stream tips, such
as that shown in figure 9 of reference 3. It is also conceivable that
in some cases the shape of the spanwise-load-distribution curve might
be determined by some condition other than that of low induced drag.
The information presented in equation (4) and table I could be applied
to such cases.

As an example of an application of the basic data of eguation (k)
to & problem of & type different from that discussed in the section
entitled "Numerical Examples", the design of a triangular wing with
approximetely elliptical loading in both the spanwise and the chord-
wilse directions is discussed. For convenlence, this wing is called
example IV. (In reference 8, Jones has showh that, for a lifting
surface of narrow proportions lying near the center of the Mach cone,
the minimum velue of the drag due to 1lift is achleved when both the
spanwise and the chordwise loadings aere elliptical.)

The chordwlse load distribution is found from 1ntegra.tion of equa-
tion (2) to be given 'by the following equation:

Locar 11et _C1 x  (C2 1S3\ (x )2 L1 (xV
Total 117t = Gy, ©, * \Gp, * 2 ) t3¢ ey (35)
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If, as in the previous examples, .the conditions of equation (11) are
applied to equation (9), then the spanwise loed distribution 1s given
by equation (15), and the values of Cl/cL, Czch, and cll-lCL are

those of equation (14%): namely,

Cy C3
CL, G
C2_4_,%3
CL 19 CL
-c—h-g _-]é
CL kL

Substitution of these values into equation (35) glves the following
equation for the chordwise load distribution:

Local 11£t _C3 x _ (4 _3C3\(x\? , (, _ 16)(x)3 '
Total 1ift Cr cp, \t 2 .. 31/ \cp

The chordwise load 1s now specified to be zero at the trailing edge

(ci = l) . This procedure gives the following value for C3 /CL:
r

3.,.28
CL ll.-31t

and the chordwlse load becomes

Local 1ift 8\ x 8\ (x\? 16\ /x\3
Totallift=<"§ c_r"<6'5)<°_r> +<-§;‘€><°_r> (36)

The load distribution given by equation (36) is compared with an
ellipse in figure 15. The spanwlse load distribution 1s also repeated
from figure 6 for the sake of easy comparison.

The wing shape 1s readily calculated from tables I end II and is
shown in figure 16 for Cp = 0.2, M =1.2, and n = 0.3. The drag

coefficient for these conditions has been found by graphical integration
to be approximately Cp = 0.0081l. The drag coefficient of a flat wing
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at the seme conditions is 0.0091 if full lealing-edge suction is
assumed or 0.0161 if no leading-edge suction is assumed (no leeding-
edge suction has been assumed Ffor the warped wing).

CONCLUDING REMARKS :

A method has been presented for designing a sweptback wing to
have certain specified flight characteristics at supersonic speeds.
For example, a wing of given plan form, operating at a given super-
sonic Mach number, may be designed to have a specified 1ift coefficient,
a specified center of pressure, and a nearly elliptical spanwlse load
distribution. As an eid in the calculationg required for any specific
case, certaln basic dete and a computationﬁ' form ere presented as
tables. The procedure is illustrated by several exasmples,

Langley Aeronautical Laboratory : E
National Advisory Committee for Aeronautics
Langley Field, Va. '
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Figure 8.~ Wing shape for example I with ordinates expressed as fractions
of the local chord c. '
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Flaure 9.- Wing shape for example I with ordinates e :p:reued ap fractions
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Flgure 10.~ Pressure distribution for exsmmle I. Cy, = 0.2; m = 0.57T;
M-ll!m.
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Figure 12.- Pressure distribution for example II.

R T



A

e
z
e

> ~N / .
AN V4
~7
6 ) / / Mach /ine .

/4 Center of pressure

< LA Center of pressure for Hat wing
O 1 1 ] Le/ z/I/ 1 L L 1 1
0 2 4 b 8 yAe; L2 /4 L6 L8 2.0
’ z/c
2r
.00
Z/cn
-2+
B2 B — ' 5 10 72 /4 76 78 —Z0

Figure 13.- Wing shape and pressure distribution for example III.
CL = o.h-i m = 0.6-i M= 1.54,
SR
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Figure 1k.- Spanvise load distribution for example ITI compared with
elliptical load distribution. -
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Figure 15.- Load distribution for exsmple IV.
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Figure 16.- Wing shape for example IV. Cr, = 0.2, M= 1.2; n = 0.3, .




